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a b s t r a c t

Forced harmonic vibration of a non-uniform elastic beam with attached dynamic

vibration absorbers (DVA) is studied. Analytical approximation of the solution is

obtained by the functional perturbation method (FPM). The problem has application to

cutting tools operations where the resistance of the tool holder against regenerative

(FRF). A test case of a beam with step-like heterogeneity and single DVA at the tip shows

that the FPM solution is very accurate for up to �40 percent deviation in both stiffness

and mass density. Using the analytical results and Sims approach, optimal DVA tuning is

found for each set of beam heterogeneity parameters by solving a set of nonlinear

algebraic equations numerically. It is found that the optimum can be further improved

by searching for the best step location. The system optimization is then expanded to a

general heterogeneous beam with a DVA at its tip. The mass and stiffness distribution is

optimized by applying the Lagrange variation method on the FPM solution yielding

Fredholm integral equations. The optimized morphology is found to be approximately

linear and far from the ‘‘intuitive’’ step-like one (Rivin and Kang, 1992) and yields better

chatter-resistance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The subject of free and forced vibration of uniform beams carrying single and multiple one-dof spring-mass-dampers
has been studied extensively in the literature. Analytical solutions were obtained by Snowdon [1], Bergman and Nicholson
[2–3], Ozguven and Candir [4], Manikanahally and Crocker [5], Gúrgóze [6]. Wu et al. [7–8] combined numerical methods.
Although [5] covers non-uniform beams, the natural frequencies are found numerically. Korenev and Reznikov [9] obtained
analytically accurate solutions for forced harmonic vibrations of a heterogeneous cantilever beam with an attached single
one-dof spring-mass-damper; however, the solutions are limited to specific laws of stiffness and mass variation. Wu [10]
investigated the free vibration of a non-uniform cantilever beam carrying multiple two-dof spring-mass-dampers by the
finite element method.

In the present paper the solution of forced harmonic vibrations of a non-uniform cantilever beam with multiple
spring-mass-dampers is obtained analytically by the functional perturbation method (FPM) (Altus et al. [11,12]).
The method can be applied to optimal design of machine tool structures where the cutting tool holder is non-uniform
and has large overhang ratio (internal turning tools). The dynamic vibration absorber (DVA) is a passive device with a
ll rights reserved.
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Nomenclature

b chip width
c DVA normalized modal damping
Gxz Green’s function as a function of x and z
k DVA normalized modal stiffness
K beam stiffness per unit length
m DVA normalized mass
M beam mass per unit length
s step location
u1 orientation coefficient
uxt beam transverse displacement at x location

and time t

Ux beam transverse displacement in the fre-
quency domain

y displacement of the cutting tool normal to the
cutting surface

b correlation coefficient between stiffness and
mass deviations of a beam

e relative phase angle of vibration between
successive tooth passes

k ‘‘variation’’ measure of distributed stiffness of
a heterogeneous beam

m ‘‘variation’’ measure of distributed mass of a
heterogeneous beam

c frequency parameter.
o vibration angular frequency
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spring-mass-damper model attached to the tool holder (cantilever beam) to attenuate excessive vibrations during the
cutting process (Donies and Van Den Noortgate [13]).

Self-excited vibration, known as chatter, causes increased tool wear, and results in a reduction of material removal rate.
Understanding and controlling chatter yield reduced costs and higher productivity. Chatter was thought as a result of a
negative damping effect [14]. Guerney and Tobias [15] and Tlusty [16] showed that chatter occurs due to regenerative
effect and mode coupling. These latter propositions were based on the linear theory of chatter but were able to explain
many behavioral patterns of chatter and have led to the development of many control methods. Stability diagrams were
derived in the process parameters space. The linear theory, however, fails to explain some patterns like finiteness of chatter
amplitude and bifurcations. These phenomena are explained by assuming nonlinearity in the machine tool stiffness,
cutting force, and friction induced at the tool-chip interface (Hanna and Tobias [17], Deshpande and Fofana [18], Moon
[19], Wiercigroch and Krivtsov [32], Warminski et al. [33], Nosyreva and Molinari [34]). We focus here on the holder
heterogeneity effects which are nonlinear, staying with the linear regenerative chatter, and leave the coupling with other
nonlinearities, such as discontinuity of the friction characteristics (Wiercigroch and Krivtsov [32]) and nonlinear
regenerative effect (Stépán [35]) to future study. The simplified linear theory of chatter is proven not to substantially alter
the most important effects on the stability limit as they are found experimentally (Tlusty [20], Moon [19], Moradi et al.
[21]).

The DVA device, when tuned properly, can reduce the peak magnitude of the frequency response function (FRF) of the
tool holder. This is achieved by using Ormondroyd and Den Hartog’s classical ‘equal peaks’ method (Den Hartog [22]). For
improving the chatter stability, other methods have been proposed: analytical (Rivin and Kang [23], Sims [24]), numerical
(Liu and Rouch [25], Moradi et al. [21]), and by manual tuning (Tarng et al. [26]).

Rivin and Kang [23] and Sims [24], considered the cantilever tool as a lumped, linear and one dof model. The DVA is
considered as an additional linear dof. Saffury and Altus [27] generalized Sims method analytically to the case of
continuous uniform beam.

Analytical solutions of stability limit in turning show that the depth of cut dominates the chatter instability, and is
inversely proportional to the most negative real value of the FRF (Tlusty [20]).

The ‘‘combination structure’’ proposed by Rivin and Lapin [28] for tool holders is a heterogeneous bar composed of two
parts: a root segment (with high Young’s modulus), and an overhanging free segment (made of light material). Rivin and
Kang [23] optimized the parameters of the combined lumped model with a DVA using the Kd optimization criteria, where
K is the effective stiffness and d represents the log-decrement damping parameter. Sims [24] optimized separately the
magnitude and the real part of the FRF for the lumped mass model. Although Rivin’s method offers superior performance
over Den Hartog’s method, it does not optimize the real part of the FRF [24].

The manuscript is organized as follows. In chapter 2, the FRF of a heterogeneous beam with attached DVAs is solved
analytically by the FPM and then examined in chapter 3 by considering a piecewise homogeneous beam for which an exact
solution can be derived. In chapter 4, the problem is applied to a cutting tool holder with step-like heterogeneity and single
DVA at its tip. The chatter-resistance for a given step heterogeneity is obtained and optimized by tuning the DVA
parameters according to Sims approach ([24,27]). In chapter 5 we search for a step location which produces the best
optimum. In chapter 6, the optimization is expanded to finding the mass and stiffness distribution of a general
heterogeneous beam with single DVA at the tip.
2. Forced vibration of a heterogeneous beam with attached DVAs

In the following, the solution of the forced harmonic vibration of a heterogeneous beam with attached DVAs will be
approximated analytically by the FPM. The dynamic governing equation of a non-uniform cantilever beam with a mass Mx
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Fig. 1. Cantilever beam with attached spring-mass-damper systems and distributed load.
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and (bending) stiffness Kx per unit length, loaded by a distributed load qxt is,

ðKxuxt;xxÞ;xxþMxuxt;tt ¼ qxt; 0oxoL; t40 (1)

The Boundary Conditions (BCs) are:

uxtjx ¼ 0 ¼ uxt;xjx ¼ 0 ¼ Kxuxt;xxjx ¼ L ¼ ðKxuxt;xxÞ;xjx ¼ L ¼ 0; t40 (2)

where uxt is the transverse displacement along the beam and it is a function of space (x) and time (t). For a simple harmonic
external loading with angular frequency o:

qxt ¼Qxeiot ; (3)

the forced vibration problem has the steady-state solution:

uxt ¼Uxeiot : (4)

The system includes n attached DVAs having springs kj, viscous dampers cj and masses mj, located at aj (Fig. 1). The
displacement amplitude of a DVA mass (mj) in the frequency domain is,

wj ¼HjUaj
ðno summationÞ; Hj ¼ 1�

mjo2

kjþcjio

 !�1

; (5)

where Hj is the amplification between wj and the cantilever transverse displacement at aj.
Substituting (3) and (4) into (1), and taking into account the inertial forces of the DVAs, the governing equation in the

frequency domain is therefore:

J� ðKxUx;xxÞ;xx�o2MxUx�Qx�
Xn

j ¼ 1

mjo2HjUxdxaj
¼ 0; 0oxoL; (6)

with BCs:

Uxjx ¼ 0 ¼ 0; Ux;xjx ¼ 0; ðKxUx;xxÞjx ¼ L ¼ 0; ðKxUx;xx;xÞjx ¼ L ¼ 0; (7)

where J is defined in (6) for convenience. Equation (6) is true for any given stiffness and mass morphology; therefore, by
the FPM ([11,12]), J and its functional derivatives with respect to these morphologies, near homogeneous fields (M(0), K(0)),
have to vanish too, i.e.,

J;Kx1
���Kxi

Mx1
���Mxj
j Kx ¼ Kð0Þ

Mx ¼ Mð0Þ
¼ 0: (8)

This yields a set of PDEs for each order of differentiation. The zero-order equation is:

K ð0ÞUð0Þx;xxxx�Mð0Þo2Uð0Þx ¼ Qxþ
Xn

j ¼ 1

mjo2HjU
ð0Þ
x dxaj

BCs : Uð0Þx jx ¼ 0 ¼Uð0Þx;x jx ¼ 0 ¼Uð0Þx;xxjx ¼ L ¼Uð0Þx;xxxjx ¼ L ¼ 0; (9)

where U(0) is the transverse displacement of the corresponding homogeneous beam, i.e. for Mx=M(0) and Kx=K(0). The first-
order equations, which are obtained by functionally differentiating J by ‘‘Kx1

’’ and ‘‘Mx1
’’, respectively, are:

K ð0ÞUðKÞxx1 ;xxxx�Mð0Þo2UðKÞxx1
¼�ðdxx1

Uð0Þx;xxÞ;xxþ
Xn

j ¼ 1

mjo2HjU
ðKÞ
xx1

dxaj

BCs : UðKÞxx1
jx ¼ 0 ¼UðKÞxx1 ;x

jx ¼ 0 ¼UðKÞxx1 ;xxjx ¼ L ¼UðKÞxx1 ;xxxjx ¼ L ¼ 0; (10)
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and,

Kð0ÞUðMÞxx1 ;xxxx�Mð0Þo2UðMÞxx1
¼o2dxx1

Uð0Þx þ
Xn

j ¼ 1

mjo2HjU
ðMÞ
xx1

dxaj

BCs : UðMÞxx1
jx ¼ 0 ¼UðMÞxx1 ;x

jx ¼ 0 ¼UðMÞxx1 ;xxjx ¼ L ¼UðMÞxx1 ;xxxjx ¼ L ¼ 0; (11)

where,

UðMÞxx1
�Ux;Mx1

jMx ¼ Mð0Þ

Kx ¼ Kð0Þ
; UðKÞxx1

�Ux;Kx1
jMx ¼ Mð0Þ

Kx ¼ Kð0Þ
: (12)

The second-order equations related to differentiating by ‘‘Kx1
Kx2

’’, ‘‘Mx1
Mx2

’’ and ‘‘Kx1
Mx2

’’, respectively, are:

Kð0ÞUðK1K2Þ
xx1x2 ;xxxx�Mð0Þo2UðK1K2Þ

xx1x2
¼�ðdxx1

UðKÞxx2 ;xxþdxx2
UðKÞxx1 ;xxÞ;xxþ

Xn

j ¼ 1

mjo2HjU
ðK1K2Þ
xx1x2

dxaj

BCs : UðK1K2Þ
xx1x2
jx ¼ 0 ¼UðK1K2Þ

xx1x2 ;x
jx ¼ 0 ¼UðK1K2Þ

xx1x2 ;xxjx ¼ L ¼UðK1K2Þ
xx1x2 ;xxxjx ¼ L ¼ 0; (13)

K ð0ÞUðM1M2Þ
xx1x2 ;xxxx�Mð0Þo2UðM1M2Þ

xx1x2
¼o2ðdxx1

UðMÞxx2
þdxx2

UðMÞxx1
Þþ
Xn

j ¼ 1

mjo2HjU
ðM1M2Þ
xx1x2

dxaj
(14)

BCs : UðM1M2Þ
xx1x2

jx ¼ 0 ¼UðM1M2Þ
xx1x2 ;x

jx ¼ 0 ¼UðM1M2Þ
xx1x2 ;xxjx ¼ L ¼UðM1M2Þ

xx1x2 ;xxxjx ¼ L ¼ 0;

and,

K ð0ÞUðK1M2Þ
xx1x2 ;xxxx�Mð0Þo2UðK1M2Þ

xx1x2
¼o2dxx2

UðKÞxx1
�ðdxx1

UðMÞxx2 ;xxÞ;xxþ
Xn

j ¼ 1

mjo2HjU
ðK1M2Þ
xx1x2

dxaj
(15)

BCs : UðK1M2Þ
xx1x2

jx ¼ 0 ¼UðK1M2Þ
xx1x2 ;x

jx ¼ 0 ¼UðK1M2Þ
xx1x2 ;xxjx ¼ L ¼UðK1M2Þ

xx1x2 ;xxxjx ¼ L ¼ 0;

where,

UðM1M2Þ
xx1x2

�Ux;Mx1
Mx2
jMx ¼ Mð0Þ

Kx ¼ Kð0Þ
; UðK1K2Þ

xx1x2
�Ux;Kx1

Kx2
jMx ¼ Mð0Þ

Kx ¼ Kð0Þ
; UðK1M2Þ

xx1x2
�Ux;Kx1

Mx2
jMx ¼ Mð0Þ

Kx ¼ Kð0Þ
: (16)

All of the PDE’s (9)–(15) are non-homogeneous equations of the form:

Kð0Þ ~Ux;xxxx�Mð0Þo2 ~Ux ¼
~Q x

BCs : ~Uxjx ¼ 0 ¼
~Ux;xjx ¼ 0 ¼

~U x;xxjx ¼ L ¼
~Ux;xxxjx ¼ L ¼ 0: (17)

The solution of this problem can be obtained by using the Green’s function method:

~Ux ¼ Gxx �
~Q x: (18)

where Gxz is the solution of BVP (17) for ~Q x ¼ dxx. Thus, the solution of (9) is:

Uð0Þx ¼ Gxx � Qxþ
Xn

j ¼ 1

o2mjHjU
ð0Þ
aj

Gxaj
: (19)

The displacement at x=aj for the homogeneous case ðUð0Þaj
Þ is obtained by using the ‘‘work method’’ [9]:

Uð0Þai
¼ A�1

ij Bð0Þj : (20)

Aij and Bð0Þj are defined by,

Aij ¼ dij�o2mjHjGaiaj
ðno summationÞ; Bð0Þj ¼ Gajx � Qx; (21)

where dij is Kronecker delta. The solution of (10) and (11), respectively, are:

UðKÞxx1
¼�Gxx1 ;x1x1

Uð0Þx1 ;x1x1
þ
Xn

j ¼ 1

mjo2HjU
ðKÞ
ajx1

Gxaj
; (22)

UðMÞxx1
¼o2Gxx1

Uð0Þx1
þ
Xn

j ¼ 1

mjo2HjU
ðMÞ
ajx1

Gxaj
; (23)

where

UðKÞaix1
¼ A�1

ij BðKÞj ; BðKÞj ¼�Gajx1 ;x1x1
Uð0Þx1 ;x1x1

; (24)

and

UðMÞaix1
¼ A�1

ij BðMÞj ; BðMÞj ¼o
2Uð0Þx1

Gajx1
: (25)
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The solution of (13)–(15), respectively, are:

UðK1K2Þ
xx1x2

¼�Gxx1 ;x1x1
UðKÞx1x2 ;x1x1

�Gxx2 ;x2x2
UðKÞx2x1 ;x2x2

þ
Xn

j ¼ 1

mjo2HjU
ðK1K2Þ
ajx1x2

Gxaj
; (26)

UðM1M2Þ
xx1x2

¼o2ðGxx1
UðMÞx1x2

þGxx2
UðMÞx2x1
Þþ
Xn

j ¼ 1

mjo2HjU
ðM1M2Þ
ajx1x2

Gxaj
; (27)

UðK1M2Þ
xx1x2

¼o2Gxx2
UðKÞx2x1
�Gxx1 ;x1x1

UðMÞx1x2 ;x1x1
þ
Xn

j ¼ 1

mjo2HjU
ðK1M2Þ
ajx1x2

Gxaj
; (28)

where

UðK1K2Þ
aix1x2

¼ A�1
ij BðK1K2Þ

j ; BðK1K2Þ

j ¼�ðGajx1 ;x1x1
UðKÞx1x2 ;x1x1

þGajx2 ;x2x2
UðKÞx2x1 ;x2x2

Þ; (29)

UðM1M2Þ
aix1x2

¼ A�1
ij BðM1M2Þ

j ; BðM1M2Þ

j ¼o2ðGajx1
UðMÞx1x2

þGajx2
UðMÞx2x1
Þ: (30)

and

UðK1M2Þ
aix1x2

¼ A�1
ij BðK1M2Þ

j ; BðK1M2Þ

j ¼o2Gajx2
UðKÞx2x1
�Gajx1 ;x1x1

UðMÞx1x2 ;x1x1
: (31)

Therefore, the solution for forced harmonic vibrations of the heterogeneous beam with attached DVAs is approximated by
Fréchet functional series:

Ux ¼Uð0Þx þUðKÞxx1
� Kx1

0 þUðMÞxx1
�Mx1

0 þ1
2ðU
ðK1K2Þ
xx1x2

� �Kx1

0 Kx2

0 þUðM1M2Þ
xx1x2

� �Mx1

0 Mx2

0 þ2UðK1M2Þ
xx1x2

� �Kx1

0 Mx2

0 Þþ � � � : (32)

3. A heterogeneous turning bar with a single DVA

The aim of this chapter is to validate and examine the general FPM solution outlined in chapter 2 by considering a
heterogeneous-piecewise homogeneous cantilever beam for which an exact solution can be derived. For simplicity single
DVA and concentrated loading at the beam tip are analyzed.

The zero-order and first-order coefficients are:

Uð0Þx ¼fGxL

UðKÞxx1
¼�gLx1 ;x1x1

gxx1 ;x1x1

UðMÞxx1
¼o2gLx1

gxx1
: (33)

The coefficients for the second order are:

UðK1K2Þ
xx1x2

¼�gxx1 ;x1x1
UðKÞx1x2 ;x1x1

�gxx2 ;x2x2
UðKÞx2x1 ;x2x2

UðM1M2Þ
xx1x2

¼ gxx1
UðMÞx1x2

o2þgxx2
UðMÞx2x1

o2

UðK1M2Þ
xx1x2

¼ gxx2
UðKÞx2x1

o2�gxx1 ;x1x1
UðMÞx1x2 ;x1x1

: (34)

gxx and f are defined by:

gxx ¼ Gxxþmo2HfGxLGLx; f� ð1�o2mHGLLÞ
�1: (35)

Inserting (33) and (34) into (32) yields:

Ux ¼fGxL�fGLx1 ;x1x1
gxx1 ;x1x1

� Kx1

0 þo2fGLx1
gxx1
�Mx1

0 þfGLx2 ;x2x2
gxx1 ;x1x1

gx1x2 ;x1x1x2x2
� �Kx1

0 Kx2

0 þo4fGLx2
gxx1

gx1x2

� �Mx1

0 Mx2

0 �2fo2GLx1 ;x1x1
gxx2

gx2x1 ;x1x1
� �Kx1

0 Mx2

0 : (36)

A dimensionless frequency parameter c is defined by,

c4
¼
o2L4Mð0Þ

K ð0Þ
: (37)

Using non-dimensional parameters without re-notations:

x

L
-x;

x
L
-x;

x1

L
-x1;

x2

L
-x2

Kx1

K ð0Þ
-Kx1

;
Mx1

Mð0Þ
-Mx1

;
K ð0ÞGxx

L3
-Gxx;

K ð0ÞUx

L3
-Ux

K ð0ÞUð0Þx

L3
-Uð0Þx ;

m

Mð0ÞL
-m;

k

K ð0Þ=L3
-k;

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K ð0ÞMð0Þ=L2

p -c: (38)
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The dimensionless response at the tip of the cantilever (FRF) is therefore:

U1 ¼ g11þc
4g2

1x1
�Mx1

0 �g2
1x1 ;x1x1

� Kx1

0 þg1x2 ;x2x2
g1x1 ;x1x1

gx1x2 ;x1x1x2x2
� �Kx1

0 Kx2

0 þc8g1x1
g1x2

gx1x2

� �Mx1

0 Mx2

0 �2c4g1x2
g1x1 ;x1x1

gx1x2 ;x1x1
� �Kx1

0 Mx2

0 ; (39)

where

gxx ¼ Gxxþmc4HfGx1G1x; H¼ 1�
mc4

kþc2ci

 !�1

; f¼ ð1�mc4HG11Þ
�1: (40)

The real part of the FRF (denoted in the following by R) is therefore (39):

R� Re½U1� ¼ f ð0Þ þ f ð1Þx1
�Mx1

0 þ f ð2Þx1
� Kx1

0 þ f ð3Þx1x2
� �Mx1

0 Mx2

0 þ f ð4Þx1x2
� �Kx1

0 Kx2

0 þ f ð5Þx1x2
� �Kx1

0 Mx2

0 ; (41)

where,

f ð0Þ ¼ Re½f�G11; f ð1Þx1
¼ Re½f2

� �c4G2
1x1
; f ð2Þx1

¼�Re½f2
� � G2

1x1 ;x1x1
;

f ð3Þx1x2
¼c8G1x1

G1x2
ðRe½f2

�Gx1x2
þRe½af2

�Gx11G1x2
Þ;

f ð4Þx1x2
¼ ðG1x1

Gcx2
Þ;x1x1x2x2

ðRe½f2
�Gx1x2

þRe½af2
�G1x1

G1x2
Þ;x1x1x2x2

;

f ð5Þx1x2
¼�2c4

ðG1x1
G1x2
Þ;x1x1
ðRe½f2

�Gx1x2
þRe½af2

�Gx11G1x2
Þ;x1x1

: (42)

a is defined by

a¼mc4Hf: (43)

The corresponding Green’s function of the BVP (17) is obtained analytically using Krylov’s functions [9]:

Gxx ¼

1

2
ðcosðxcÞ�coshðxcÞÞBxþ

1

2
ðsinðxcÞ�sinhðxcÞÞDx 0oxoxo1

1

2
ðcosðxcÞ�coshðxcÞÞBxþ

1

2
ðsinðxcÞ�sinhðxcÞÞDx 0oxoxo1

:

8>><
>>: (44)

Bx and Dx are initial parameters (moment and shear force at x=0):

Bx ¼
�d2 sinðxcÞ�d1 sinhðxcÞþd3ðcosðxcÞ�coshðxcÞÞ

2c3
ð1þcosðcÞcoshðcÞÞ

; (45)

Dx ¼
d1 cosðxcÞþd2 coshðxcÞþd4ðsinðxcÞ�sinhðxcÞÞ

2c3
ð1þcosðcÞcoshðcÞÞ

; (46)

where,

d1 ¼ 1þcosðcÞcoshðcÞ�sinðcÞsinhðcÞ; d2 ¼ 1þcosðcÞcoshðcÞþsinðcÞsinhðcÞ

d3 ¼ sinðcÞcoshðcÞ�cosðcÞsinhðcÞ; d4 ¼ sinðcÞcoshðcÞþcosðcÞsinhðcÞ: (47)

For illustration and comparison with exact solutions, we examine the case of a combined step-like morphology of stiffness
and mass (Fig. 2):

Mx
0 ¼

DM xos

�DM x4s
; Kx

0 ¼
DK xos

�DK x4s
; 0oso1:

((
(48)
1

ck

+ΔM

+ΔK

-ΔM

-ΔK

s

Fig. 2. A cantilever beam with a step-like morphology and attached DVA at the tip.
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Fig. 3. Re[U1] of the heterogeneous beam, for the DVA parameters: m=0.1, c=0.2, k=1.1, and morphology: s=0.5, DK=DM=0.05.

Fig. 4. Re[U1] of the heterogeneous beam, for the DVA parameters: m=0.1, c=0.2, k=1.1, and morphology: s=0.5, DK=DM=0.1.
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The integrals in (41) are obtained by using Mathematica software. Re[U1] is shown in Fig. 3 for the DVA parameters: m=0.1,
k=1.1 and c=0.2, and for (normalized) mass and stiffness deviation of DK=DM=0.05. A comparison with exact solution
based on two homogeneous regions shows that the zero order term in the FPM series is not sufficient and far from the
exact one. However, the second-order approximation is very accurate. Fig. 4 shows the same comparison for greater
deviations DK=DM=0.1. The FPM second-order approximation is very accurate for most of the frequency range. A local
region around the maximum point reveals a small diversion. Nevertheless, for optimization purposes which will be
discussed in the following, the low accuracy region is not involved.
4. Chatter resistance optimization for heterogeneous turning bar with DVA

In the present chapter the condition for the stability of turning bars against regenerative chatter will be first introduced
according to [29]. Then the chatter-resistance of a heterogeneous tool holder will be optimized by tuning the DVA
parameters correctly.

Tlusty and Polacek [29] introduced the condition for regenerative chatter in turning operation considering the
orthogonal cutting case. The system of workpiece and cutting tool are linear and characterized by two individual modes of
vibration (directions x1 and x2 in Fig. 5). The cutting force f is assumed directly proportional to the chip area, and has a
constant direction j. Vibration amplitudes y0 and y represent the wavy surfaces before and after a cutting pass,
respectively, with a phase shift e. For simplicity we consider the case where the principal directions of the beams’ moments
of inertia are orthogonal to the cutting surface. The chip width (b) at the stability limit point is [20]:

blim ¼
�1

2Ksu1 ReðF1Þ
: (49)
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Fig. 6. Re[U1] for DVA parameters m=0.1, k=1.1 and three different values of c.

New surface

x1
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f

x2

y

v

y
y0�

Previous surface

�

Fig. 5. The regeneration diagram relating force, surface waviness and vibration.
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Ks (N/m2) is a workpiece material constant, F1 is the transfer function (TF) in direction x1, and u1 is an orientation factor
(u1=cos(j)). For positive orientation factor u1, the smallest chip width at which chatter may occur is:

blim;cr ¼
�1

2Ksu1 min½ReðF1Þ�
: (50)

where min(Re(F1)) denotes the most negative (minimum) real part of F1. Note that if u1 is negative, the chatter stability is
dictated by the most positive real part of F1 (max[Re(F1)]) which should be decreased for increasing blim,cr

The cantilever beam analyzed in chapter 3 may represent a heterogeneous tool holder with attached DVA, therefore
F1=U1. A step-like morphology with a single DVA attached to its tip is considered. This specific choice is used as a
validation test for the FPM accuracy and also follows the intuitive design by Rivin and Kang [23]. Tuning the DVA
parameters for optimal response is done by generalizing Sims approach for a lumped mass model [24,27] to the case of
heterogeneous continuous beams.

Fig. 6 describes the response (Re[U1]) of a cantilever with DK=DM=0.05 and selected DVA parameters for 3 different c

values. Three damping-independent (locked) frequencies, noted as c(p), c(n) and c(a) (after [24]), are identified near
c=c(1)=1.8751 which is the first frequency parameter of a fixed-free homogeneous beam. Calculating these points is
commonly done by inserting c-0 and c-N into (41) and looking for c which causes Re[U1] to be singular [24,27].
However, the FPM is less accurate near these points for an undamped system. We therefore look for locked points by taking
another approach which, as far as we know, has not been implemented yet in the literature. Search for c which causes the
first derivative of the response with respect to c to vanish:

qRe½U1�

qc c ¼ cðaÞ ;cðnÞ ;cðpÞ ¼ 0:
��� (51)

This condition is ‘‘local’’, i.e. reflects c values for which Re[U1] is locally invariant with respect to c. In order to estimate the
extent of this ‘‘range of invariance’’ the solution of (51) is shown in Fig. 7, i.e. c as a function of c. It is seen that c(n), c(n) and
c(p) are practically constant except at very small c. Going back to the explicit expression of (51) it can be shown that it is
essentially a third-order polynomial in c, in which the linear part dominates the solution. Therefore, (51) practically leads



ARTICLE IN PRESS

Fig. 7. Local locked-frequencies for DVA parameters m=0.1, k=1.1 and s=0.5, DK=DM=0.05.

Fig. 8. Comparison Re[U1] at optimally tuned DVA between homogeneous and heterogeneous beams.
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to ‘‘global’’ locked points for a wide range of c. It can be shown that for a lumped mass model (51) is identical to the
common c-0 and c-N method.

For optimal tuning, Re[U1] at the locked points c(a) and c(n) has to be equal and also located at local minima. Therefore,
the following three conditions have to be fulfilled:

Re½U1�jcðaÞ ¼ Re½U1�jcðnÞ ;
qRe½U1�

qc cðaÞ ¼ 0;
qRe½U1�

qc cðnÞ ¼ 0:
������� (52)

However, for a selected value of m we have only two unknowns (c and k) to determine. Sims suggested an approximation
based on two of the three sets of equations: (52 a,b) and (52 a,c) and taking the average value from the two partial
solutions, i.e.,

c¼ 1
2ðc
ðaÞ þcðnÞÞ: (53)

It is found that for the present heterogeneous case, better response is obtained by non-equal weights:

c¼ 2
3 cðaÞ þ1

3cðnÞ: (54)

For illustration, Re[U1] described in Fig. 3 is optimized by tuning the DVA parameters according to the above method. The
optimal response is shown in Fig. 8 (s=1/2) around the negative range. The heterogeneous case is also compared to other
two homogeneous limit cases: s=1 and s=0. An improvement of 5.5 percent and 8.3 percent in the optimal chatter
resistance is achieved by s=1/2 relative to s=1 and s=0, respectively.

5. Further optimization by searching for optimal s

In the previous chapter, the optimal chatter resistance for a given s has been investigated. Here we search for s which
produces the best optimum.
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Fig. 9. Re[U1]min at optimal tuning of the DVA parameters and for step-like morphology of the beam.

Fig. 10. Re[U1]min at optimal tuning of the DVA parameters and for step-like morphology of the beam.
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Figs. 9 and 10 show the optimal chatter resistance as a function of s and variations in DK and DM, respectively. From
Fig. 9 it is noted that: (a) for DK=DM=0.1 the optimal chatter resistance for s=0.5 is increased by 9 percent and 14.3 percent
with respect to the homogeneous cases s=1 and s=0, respectively. (b) For DK=0.1 and DM=0.05 the optimal s is 0.6, which
differs from the previous example (sffi0.55). (c) For sffi0.85 the optimal chatter resistance can be increased by DK only and
is independent of DM. Fig. 10 reveals similar behavior with best resistance for the highest DK at sffi0.6. A stiffness variation
independent point is noted at sffi0.18.

An analytical approximation to the optimal step location s can be obtained by differentiating the FPM series by s and
equalizing to zero. For simplicity we consider the first three FPM terms up to the first order in DK and DM:

ðsinðcÞþsinhðcÞÞðcosðscÞ�coshðscÞÞþ
�ðcosðcÞþcoshðcÞÞðsinðscÞ�sinhðscÞÞ

 !2

�
DK

DM

ðsinðcÞþsinhðcÞÞðcosðscÞþcoshðscÞÞþ
�ðcosðcÞþcoshðcÞÞðsinðscÞþsinhðscÞÞ

 !2

¼ 0: (55)

Note that (55) and therefore the optimal s are independent of the DVA parameters. For the private case DK=DM, one can
obtain s explicitly:

s¼
1

c
arctan

sinðcÞþsinhðcÞ
cosðcÞþcoshðcÞ

� �
: (56)

For a tuned DVA, the minimum of Re[U1] is located at c=c(a) or c=c(n); therefore the first chatter frequency will occur at
c=c(a). For DK=DM=0.1 and for any s (0oso1), c(a) is practically uniform (1.77oc(a)o1.79). Inserting c(a)=1.77 and 1.79
into (56) yields s=0.529 and 0.523 which are close to the optimal s obtained graphically (Fig. 9). Interestingly, this value is
close to 0.5 which was originally used by Rivin and Kang [23].
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6. Morphology optimization of mass and stiffness

In this chapter, the distributions of mass and stiffness along the bar are optimized for maximum chatter-resistance. This
important subject had limited consideration (Rivin and Kang [23]), using lumped mass model, single step heterogeneity
and simplified optimization criteria. Our aim is to obtain the optimal morphology restricted by a ‘‘physical’’ constraint
which is also mathematically plausible.

We optimize the FPM solution (41) under the following constraints on morphology:

Mx1

0 �Mx1

0 ¼ m2; Kx1

0 � Kx1

0 ¼ k2: (57)

m and k are ‘‘variation’’ measures for mass and stiffness, respectively.
Using the Lagrange multipliers’ method we redefine the target function as follows:

R¼ f ð0Þ þ f ð1Þx1
�Mx1

0 þ f ð2Þx1
� Kx1

0 þ f ð3Þx1x2
� �Mx1

0 Mx2

0 þ f ð4Þx1x2
� �Kx1

0 Kx2

0 þ f ð5Þx1x2

� �Kx1

0 Mx2

0 þl1ðMx1

0 �Mx1

0 �m2Þþl2ðKx1

0 � Kx1

0 �k2Þ: (58)

where l1 and l2 are the Lagrange multipliers. Thus, by Lagrange method for variation problems the optimal morphology is
obtained by

qR

ql1
¼ 0;

qR

ql2
¼ 0;

dR

dMx3
0
¼ 0;

dR

dKx3
0
¼ 0: (59)

Thus we obtain the constraints on morphology (57), and coupled integral equations which are written here in a matrix
format:

fx3
þgx1x3

� Px1

0 þ2kPx3

0 ¼ 0; (60)

where,

Px1

0 ¼
Mx1
0

Kx1
0

" #
; fx3

¼
f ð1Þx3

f ð2Þx3

2
4

3
5; k¼

l1 0

0 l2

" #
; gx1x3

¼
2f ð3Þx1x3

f ð5Þx1x3

f ð5Þx3x1
2f ð4Þx1x3

2
4

3
5: (61)

System (60) is a Fredholm integral equation of the second kind and its solution can be obtained by the Adomian’s
decomposition method [30]:

Px3

0 ¼
X1
i ¼ 1

P
0 i
x3
; (62)

where,

P
01
x3
¼�1

2k
�1fx3

P
0iþ1
x3
¼�1

2k
�1
ðgx1x3

� P
0 i
x3
Þ (63)

However, it will be shown that the first-order approximation of the optimized morphology Px3
0 ffiP

01
x3

is sufficient for small
m and k values and gives simple and explicit approximate solution. According to this approximation the Lagrange
multipliers are (57):

l1 ¼ 7
1

2m ðf
ð1Þ
x3
� f ð1Þx3
Þ
1=2; l2 ¼ 7

1

2k ðf
ð2Þ
x3
� f ð2Þx3
Þ
1=2: (64)

We choose appropriate signs for optimal response, i.e., negative for both l1 and l2. Therefore, the optimized morphologies
are:

Mx1

0 ¼ m
f ð1Þx1

ðf ð1Þx3
� f ð1Þx3
Þ
1=2

; Kx1

0 ¼ k
f ð2Þx1

ðf ð2Þx3
� f ð2Þx3
Þ
1=2

: (65)

Inserting (65) into (41) the approximated optimal response is:

R¼ f ð0Þ þmðf ð1Þx1
� f ð1Þx1
Þ
1=2
þkðf ð2Þx1

� f ð2Þx1
Þ
1=2
þm2 f ð1Þx1

� f ð3Þx1x2
� f ð1Þx2

f ð1Þx3
� f ð1Þx3

þk2 f ð2Þx1
� f ð4Þx1x2

� f ð2Þx2

f ð2Þx3
� f ð2Þx3

þkm
f ð2Þx1
� f ð5Þx1x2

� f ð1Þx2

ðf ð2Þx3
� f ð2Þx3
Þ
1=2
ðf ð1Þx3
� f ð1Þx3
Þ
1=2

: (66)

System (60) can be also solved numerically by the quadrature (or Nystrom) methods [31]. Specifically, Kx
0 and Mx

0 are
discretized into 10 increments and the quadrature rectangle rule is used on (60) to built a system of nonlinear algebraic
equations with the unknowns of mass and stiffness vectors. Additional algebraic equations are given by the optimization
method described in chapter 4, Eqs. (51)–(54), for determining the unknowns c and k. The optimized mass and stiffness are
shown in Fig. 11 for three different m and k values (m=k). It can be seen that: (a) the analytical FPM approximation is very
close to the numerical FPM solution; and (b) the optimized morphology form is kept as we increase both m and k.
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Fig. 11. Optimized morphology of: (a) Mx
0 and (b) Kx

0 , for different k and m values (k=m).
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In general Mx
0 and Kx

0 are positively correlated and therefore it is fruitful to solve a correlated case, for example:

Kx
0 ¼ bMx

0 : (67)

where b is constant. The target function is therefore:

R¼ f ð0Þ þFð1Þx1
�Mx1

0 þFð2Þx1x2
� �Mx1

0 Mx2

0 þlðMx1

0 �Mx1

0 �m2Þ: (68)

where,

Fð1Þx1
þ f ð1Þx1

þbf ð2Þx1
; Fð2Þx1x2

¼ f ð3Þx1x2
þb2f ð4Þx1x2

þbf ð5Þx1x2
: (69)

Then, by Lagrange method of variation we obtain:

Fð1Þx1
þðFð2Þx1x2

þFð2Þx2x1
Þ �Mx2

0 þ2lMx1

0 ¼ 0; Mx1

0 �Mx1

0 ¼ m2: (70)

By Fredholm method, the solution of (70)-a is:

Mx1

0 ¼
X1
i ¼ 1

M
0 i
x1
; (71)

where,

M
01
x1
¼�

1

2l
Fð1Þx1

M
0iþ1
x1
¼�

1

2l
ðFð2Þx1x2

þFð2Þx2x1
Þ �M

0i
x2

(72)

The first-order approximation of (72) ðMx
0 ffiM

01
x Þ is considered and higher order terms are neglected, thus:

lffi�
1

2m ðF
ð1Þ
x1
� Fð1Þx1

Þ
1=2: (73)



ARTICLE IN PRESS

Fig. 13. Re[U1] vs. m or k (m=k) for optimized and step-like morphologies (with optimized step location). For both morphologies the same constraint is

determined and b=1.

Fig. 12. Optimized Mx
0 for b=1 and different values of m.
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The optimized morphology is therefore:

Mx1

0 ffiM
01
x1
¼ m

Fð1Þx1

ðFð1Þx1
� Fð1Þx1

Þ
1=2

: (74)

And the response function is:

R¼ f ð0Þ þmðFð1Þx1
� Fð1Þx1

Þ
1=2
þm2 Fð1Þx1

� Fð2Þx1x2
� Fð1Þx2

Fð1Þx1
� Fð1Þx1

: (75)

Fig. 12 shows that the approximate analytical FPM solution is very close to the numerical one for small values of m and k.
The optimal morphology distribution is practically linear and far from the ‘‘intuitive’’ single step solution of Rivin and Kang
[23]. The zero deviation at xffi0.5 is also notable.

The optimal chatter resistance of the optimized morphology (obtained by the numerical quadrature method) is
improved as we increase both m and k, and gives better resistance than the step-like morphology with optimized step-
location, under the same constraints (57) (see Fig. 13).

7. Summary and conclusions

The FRF of a non-uniform cantilever beam with multiple spring-mass-dampers is obtained analytically by the FPM
approximation up to the second order. The method is examined by comparing with the exact FRF of a step-like
heterogeneous beam and single DVA. The results are found accurate for stiffness and mass variations, DK and DM, up to 20
percent.

The FPM solution is then used for optimizing the chatter-resistance of a heterogeneous tool holder with attached DVA.
Sims approach for single dof system with DVA is generalized to the case of non-uniform (continuous) beams. The damping-
invariant frequencies are obtained by a new method using the FRF of the damped system, avoiding singular response,
rather than the undamped one.
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Further increase in the chatter-resistance is achieved by searching for the best step location (s) for each DK and DM. For
example, an improvement of 9 percent and 14.3 percent is achieved for DK=DM=0.1 with respect to the homogeneous
cases s=1 and 0, respectively. Analytical approximation to the optimal s is obtained by the FPM, and found independent of
the DVA parameters. It is also found that for some specific step locations the optimal response is independent of mass or
stiffness variation.

Finally, the optimized morphology of a general heterogeneous beam with single DVA is derived by applying the
Lagrange variation method on the FPM solution. It is found analytically that the optimized mass or stiffness deviation
distribution is approximately proportional to the first functional derivative of the resistance function with respect to
morphology. This yields a linear non-uniformity which is quite different from the well known Rivin and Kang [23] step-like
design and improves the chatter-resistance.

Notations
Ux1 x2 ���xn
 a function U of n independent variables x1, x2yxn (i.e. U=U(x1,x2,y,xn))
Ux1 x2 ���xn ;xixj ���xk

partial derivatives of Ux1 x2 :::xn with respect to xi, xjyxk (i, j, k=1,2,3,y)
Ux1 x2
� Vx2
integral of Ux1 x2
Vx2

over the region of x2
Ux1 x2 x3
� �Vx2

Vx3

double integral of Ux1 x2 x3

Vx2
Vx3

over the rectangle defined by x2 & x3 regions
J;Kx1

1st functional derivative of a functional J by Kx1

, i.e. J;Kx1
¼ dJ=dKx1
J;Kx1
Mx2
 2nd functional derivative of J by Kx1

and Mx2
, i.e. J;Kx1

Mx2
¼ d2J=ðdKx1

dMx2
Þ

dx1 x2

Dirac’s delta function: dx1 x2

� dðx1�x2Þ
Mx1
0
 deviation of Mx1

from a reference one M(0), i.e. Mx1
0 ¼Mx1

�Mð0Þ
Re(F)
 real part of a complex function F
Abs(F)
 magnitude of a complex function F
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